## Doing Mixed Effects Models - Coursera online quiz

**Doing Mixed Effects Models**

Qn1. Recall our file websearch3.csv. If you have not done so already, please download if from the course materials. This file describes a study of the number of searches people did with various search engines to successfully find 100 facts on the web. You originally analyzed this data with a one-way repeated measures ANOVA. Now you will use a linear mixed model (LMM). Let’s refresh our memory: How many subjects took part in this study?

Qn2. To the nearest hundredth (two digits), how many searches on average did subjects require with the Google search engine?

Qn3. Conduct a linear mixed model (LMM) on Searches by Engine. To the nearest ten-thousandth (four digits), what is the p-value of such a test? Hint: use the lme4 library and its lmer function with the subject as random effect. The use the car library and its Anova function with type = 3 and test.statistic = “f”. Prior to either, set sum-to-zero contrasts for engine.

Qn4. In light of your p-value result, are post hoc pairwise comparisons among levels of Engine justified, strictly speaking?

```
Yes
No
```

Qn5. Regardless of your answer to the previous question, conduct simultaneous pairwise comparisons among all levels of Engine. Correct your p-values with Holm’s sequential Bonferroni procedure. To the nearest ten-thousandth (four digits), what is the lowest corredted p-value resulting from such tests? Hint: use the multcomp library and its mcp function from within a call to its glht function.

This questions uses the **r statistics** programming software, if you are looking for someone to help with this question, then do not hesitate to contact MyMathLab answers .